If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-4x-32=0
a = 9; b = -4; c = -32;
Δ = b2-4ac
Δ = -42-4·9·(-32)
Δ = 1168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1168}=\sqrt{16*73}=\sqrt{16}*\sqrt{73}=4\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{73}}{2*9}=\frac{4-4\sqrt{73}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{73}}{2*9}=\frac{4+4\sqrt{73}}{18} $
| -2r+2=r-13 | | 6b+4-3b=4b-1 | | -31+5x=5(x-5) | | 6(3x−10)=6x | | 5x=14=3x | | 6u+58+92=180 | | 9t+6=87 | | 4/8=y/12 | | 47=x42 | | −2d+18−4d=60 | | 9+12x-2x=-21 | | -7(-r+2)=7r-14 | | 16c+50+98=180 | | 5r-23=32 | | 2(4-b)=2b-2-3b | | 6x=10+1x | | -7r-5=10r-26 | | t-3/4=25(3/4) | | 3(x+5=63 | | 3x+11=-6x+2 | | -6x-4x+5=105 | | 3(x+7)=-x+3 | | 4x=3(15+x) | | 6(3x-6)-4=38-8x | | 5=a(0-6)^2-2 | | 6(2y-2)=0 | | 3)-36+4y=-12 | | 2.25x-1.5=-10.5 | | 3x−2=5x−10 | | /24=6(-x-3) | | 1/2x+4=-1/2x+9 | | 2x+8+8x-5=63 |